IF THE THREE PAULI MATRCIES WORK ON SINGLE QUBIT WHAT W E ARE GETTINGS THIS COLUD BE THE THE RIGHT T COMPLEXITY
so whatw nedd for singel qubit we need a singel qubuit to nalyize is such atht manennrs one is in x axis to confirms as expon neital wit if by pie/2 e exponeet pwoer poe ipie/2
and e power pie/2 minus
for x axis is it will be
the new gathered values is e pow pie 0
0 e pow pie matrices because the roataiopn si not stopping in it so its stasfy the cubic probelms
secodn amtrices y
0 -iepow pie
iepow pie 0
third matrcies
e 2pie 0
0 -e 2 pie
pie coclude for either axises
so it gives in such that wayys so that of we rexched to thers means x and ist pow pie and
so gates aganst paulis first
2pie.epow ipie 0
0 2pie epowipie
second for y
0 -i2pie epowipie+piie/2
i2pie.epowipie+pie/2 0
for z axis
0 2pie e pow 2pie
2pie e pow 2pie 0
then to neutralise them we have to these function iwill work fx = 2pie.epowpie
why w pie rotation and ipie is exponent vertical or horizontal limit as we trace horizontal x then horizontal y then horizontal z
CONTROLLED GATES :-->
we shift the not oeprarion even oevr both the new matricwe sis cretae it works with two matrices or multipel matrices
when 2 qunbit and secodn si on not but firts qubit not of the not to work throgh out to wperforms not oeprations \
when firts q bit is 1 on then not oepration on second q ubit then firts q ubit not oepration then second in symemtrci not oeprations then
not operation of not opration to eprfomrs to chnegd the controlled gates
e powr i pie/4(z1-z2)(x1-x2) e powr ipie/4((x1-x2)(z1-z2) e powr i pie/4(i-(x1-x2)) (i-(z1-z2))
or
e powr i pie/4(i-(z1-z2) i-(x1-x2)
or
e pow i pie/4 (i-(z1-z2))(x1-x2) e pow i pie/4(z1-z2)(i-(x1-x2))
Comments
Post a Comment